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Abstract

The dissipation of the structuralvibration energy at viscoelastic supports is an efficient method of reducing modal
resonancesand consequent noise and fatigue related problems.The support stiffness has significant impact on the mo
dal characteristics. The dissipationcapabilitiesof the viscoelasticsupport depend on its stiffness. Methods to optimally
tune this support stiffnessare proposedin this study.The characteristicmechanical impedancefor structural vibration is
obtained from wave propagation analysis and non-reflecting boundary conditions. The wave propagation is analyzed
near the supports installed at edges, middle of a structure,and for the tuned vibration absorber. The dependence of the
optimal stiffnesson the locationand mass of the supports is identified. A simple analyticalsolution for optimal support
stiffness for maximum dissipationof propagatingvibrationenergy at supports is presented.

Keywords: Viscoelastic supports;Wavepropagation; Vibration control;Optimalsupportstiffness; Structural vibration

1. Introduction

Damping is an efficient method for reducing the
noise and vibration response of structures. It does not
require external hardware to actively control and
monitor the responses. To enhance the damping in the
structures, it is not always possible to add damping in
the structure itself. An alternative approach is to con
trol vibration via viscoelastic supports. For dissipation
of structural vibration, the viscoelastic materials are
widely used as the supporting material. The modal
properties and sound radiation characteristics are
affected by the support stiffness especially at low
frequencies. Among the modal parameters, modal
damping, which is the index showing the capability of
vibration reduction, is determined by elastic and ine
lastic properties of the supports. The approach of
optimally tuning the support stiffness is attractive
since the mechanical properties of the supports are
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easier to modify than those of the supported structure
itself.

Many vibration control methods have been pro
posed for continuous systems. In particular, dynamic
absorbers have been used to reduce the vibrations of
continuous systems such as rods and beams [1). Dy
namic absorbers consist of a mass, spring, and vis
cous damper attached to the primary structure. Opti
mal values for the absorber natural frequency and
damping ratio must be calculated to minimize the
vibrations of specific modes at resonances. For plates
and shells, the dynamic absorber performance was
analyzed by using the receptance method (2),

In cases where structures are compliantly supported,
the support mass is often negligible relative to that of
the supported structure. The support may be idealized
as a stiffness along the boundaries. The effects of
support flexibility on the vibration of beams and
plates have been investigated before. Kang and Kim
(3) investigated the effects of support stiffness on the
vibration of beams and plates, The flexible supports
were represented by translational and rotational
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The usual complex notation is used, F(t)=
Re{Fe'·'} . From the information of the mechanical
impedance, the time- or frequency-dependent re-

2. Characteristic mechanical impedance - a
vibrating solid bar

The mechanical impedance defined as force over
velocity is widely used to characterize the response of
a mechanical system to external excitations. For a
mass, m, supported by a spring with stiffness s.; Fig.
l(a), the mechanical impedance is estimated as

springs with complex stiffnesses, The variation of the
modal properties of the structures with the support
stiffness was calculated. Macbain and Genin [4] de
veloped numerical methods using a central difference
formula to analyze the vibrations of beams with flexi
ble supports. The system loss factors were found to
increase with a decrease in the support-to-beam elas
tic modulus ratio. Chen and Zhou [5] investigated the
effects of damping on the vibrations of distributed
systems using wave propagation methods. Forced
vibration response and sound radiation of the compli
antly supported classical plate were investigated by
Park et al, [6]. The optimal stiffness that minimized
the forced vibration and sound radiation from a rec
tangular plate was obtained from the Rayleigh-Ritz
method and wave propagation analysis. The optimal
values obtained from the two different methods
agreed well with each other.

In this study, the wave propagation near compliant
supports is analyzed to calculate the optimal support
properties for minimal vibration response. The com
pliant supports are idealized as distributed transla
tional and rotational spring, inertia and damping ele
ments. Reflection ratios are calculated from the rela
tionship between incident waves to reflected and
transmitted waves. From the non-reflecting boundary
condition which is impedance matched supports, the
characteristic mechanical impedance for structural
vibration is obtained and compared to the case of
simple longitudinal vibration. The supports are as
sumed to be located at the edges and at the middle of
the structure. The theoretical methods to calculate the
optimal support stiffuess that minimizes the velocity
response ofthe structure are presented.
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Fig. I. (a) A rigid mass supported by a spring, (b) wave
propagation in a continuous system.
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sponse of the system to external loads is calculated.
When the damping in the system is neglected, the
mechanical impedance calculated from Eq. (1) is
purely imaginary. This implies that the energy input
from the external loads is stored as the kinetic and
potential energy of the system or reflected back to the
source.

For continuous systems, Fig. l(b), such as plates,
membranes, beams, and fluids, the wave propagation
is a fluctuation of force (or pressure) and velocity of
the media over space and time. With this propagation,
the vibrational energy transfers over space, which
causes resonance if the system has a finite size. Since
the wave propagation is the simultaneous fluctuation
of force and velocity over space and time, two quanti
ties are related to each other, and cannot be specified
independently. The characteristic mechanical (or
acoustic) impedance defines the relationship between
the force and the velocity. For example, the relation
ship between the pressure and the particle velocity for
the plane traveling sound waves in air is jJIv = Pac,
where Pa is the air density and c is the speed of sound.
In this case, PaC is the characteristic acoustic imped
ance. Contrary to the mechanical impedance shown in
Eq. (I), the characteristic mechanical or acoustic im
pedance is purely real if the damping in the media is
negligible, which implies that the energy input from

(1)> F ( SJZ=il1Jw=im(O-~ .
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Fig. 2. Longitudinal wave propagation near the boundary of a
solid bar.
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external loads propagate over space if the size of a
media is infinite,

The following example, a vibrating solid bar,
shows that complete absorption of the incident waves
occurs when the boundary impedance matches the
characteristic impedance. For the quasi-longitudinal
wave propagation of the sold rods, the wave equation
is [7],

pend on the frequency, and consequently the charac

teristic acoustic impedance (pc = JPE) is also fre
quency-independent. From Eq. (5), there is no reflec
tion of the propagating waves, i.e., A=O, when the
boundary impedance matches the characteristic

acoustic impedance, b,=.JPii . This suggests that
the complete absorption of the incident waves occurs
when the boundary impedance matches the character
istic impedance of the longitudinal wave propagation,
thereby minimizing the undesirable vibration of the
rod.

The wave propagation analysis at the boundary of
the solid rod shown in this section is a simple exam
ple demonstrating the numerical procedures to obtain
the boundary condition that induces the maximum
dissipation of the incident waves. In Eq. (4), the as
sumed displacement includes only propagating wave
terms. This approach equally applies to systems with
second order differential equation of motions similar
to Eq, (2), for example, vibrating strings, torsional
and shear vibration of rods. When the differential
equation of motion is fourth order. for example a
compliantly supported rectangular plate, similar ap
proaches are used for the vibration analysis as de
scribed in the following section.

3. Wave propagation analysis of the vibrating
structure

3.1 Wave propagation at the edge of the classical
plate

(2)

(3)

where E is Young's modulus and p is the density.
For the longitudinal wave propagation, the wave
speed, c = ~EI p , does not depend on the frequency
(non-dispersive wave propagation). The characteristic
impedance in this case is pc = JPE . For the wave
reflection at =0 in Fig. 2, the ratio between the am
plitudes of the incident, B, and reflected waves, A, is
calculated by applying the boundary condition at =0:

The coefficient b, is the boundary impedance,
b, .= jJ(x.=O)/(icvW(x,= 0)) where jJ is the amplitude

ofthe fluctuating stress of the longitudinal wave. The
solution ofEq. (3) is assumed as

(4)

where A and B are the complex amplitudes of the
reflected and the incident harmonic waves, respec
tively, and k is the wave number. From Eqs. (3) and
(4), the reflection ratio for the wave propagation
shown in Fig. 2 is obtained as

In this session, transverse waves approaching nor
mally to the edge are considered. The plate is as
sumed to be infinitely long in the x-direction in order
to allow for the calculation of the reflection ratio of
the normally incident bending waves. Transverse
displacements are assumed to vary only with the dis
tance along the direction normal to the edge. Fig. 3(a)
illustrates the wave propagation at the edge and mid
dle of the plate. The equation of motion for the free
transverse vibrations of a homogeneous plate without
any constraints in the y-direction is [7],

(6)

(5)

Note that the longitudinal wave speed does not de-

where D = Eh3/12(l- v) is the bending stiffness, w is
the transverse displacement for flexural vibration, h is
the thickness, and v is Poisson's ratio. For the trans-
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3,1.1 Viscous supports
From the wave propagation analysis, the character

istic mechanical impedance of structure is identified
from non-reflecting boundary conditions. To investi
gate non-reflecting boundary conditions, viscous sup
ports are considered. The non-dimensional stiffness
parameters are given as

where the non-dimensional parameters are defined as:

where kb is the bending wave number related to the
circular frequency, kb = (0/phiDr. Applying the
.boundary conditions, Eq. (7), the transfer functions
between the incident and reflected harmonic waves
are obtained as [6]
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3.1.2 Viscoelastic supports
For viscoelastically supported plates, the support

From Eqs, (9) and (ll), the non-reflecting bound
ary condition is satisfied when the damping coeffi
cients are

(12a,b)b =Dk; , b = _Dk_b •
I r

(.l)

These coefficients are identical to the characteristic
mechanical impedances of the transversely vibrating
plate [6]. The plate supports must include both trans
lational and rotational viscous damping elements for
non-reflecting boundary conditions. In contrast with
the characteristic acoustic impedance of a vibrating
solid rod, which is frequency :independent, the charac
teristic translational and rotational impedances of
transversely vibrating plates depend on frequency.

ibrati h ( , I )1/
4

verse VI ranon, t e wave speed, Co = m" D ph ,
increases with increasing frequency. To determine the
wave propagation characteristic at the edge, two
boundary conditions are applied as

D 02W(O) =8 aw(O),
&2 r ax

(7a,b)

where S, and Sr are the translational and rota
tional boundary stiffnesses, respectively. Normally
incident harmonic waves with complex amplitude B
are assumed to propagate toward the edge from x = co,

The plate displacement is expressed as

Fig. 3. Wave propagations (a) at the edge, (b) at the vibration
absorber, and (c) at the middle of a structure, when the inci
dent wave with complex amplitude iJ approaches from
x=oo.
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stiffness is composed of complex translational and

rotational springs. TIle non-dimensional boundary.
stiffnesses are given by

(16)

where S, and S, are the real parts of the complex sup

port stiffnesses, and 17/ and 17r are the loss factors. By
substituting Eq. (13) into Eq. (9), the reflection ratios

are calculated in terms of T, R, 171' and Tfr. For the
viscoelastically supported case, the non-reflecting
boundary condition that induces complete dissipation
of reflected waves of amplitudes A and C does not
occur. However, a support stiffness that minimizes
the amplitude of reflected propagating bending waves
can befound. The exponentially decaying waves have
a limited influence, and only at the edges. This com
ponent does not contribute to the resonance. They are
neglected in the calculation. Only the reflected propa
gating waves with complex amplitudes are minimized
in the optimization problem. The minimum reflection
occurs when the parameters of the boundary stiff
nesses satisfy the equations:

3.2 Tuned vibration absorber

where M = meriIDk~ and 11 is the displacement of
the mass. Consequently, the following transfer func
tion matrix is obtained:

A same approach is expanded to include the mass
in the support system, as shown in Fig. 3(b). When
the mass of the support system is considered after
neglecting the rotational stiffness, the support be
comes the tuned vibration absorber. The mass at
tached to the support stiffness increases the vibration
energy dissipation due to the resonance of the support
system, itself. There are many different approaches to
optimally tune the parameters of the tuned vibration
absorber. In this study, the wave propagation ap
proach following the same procedures as for the vis
coelastic supports is used to find the optimal parame
ters. The three boundary conditions for Fig. 3(b) are:

(17a-c)
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Using Eq. (18) the reflection at the edge which is
supported by the vibration absorber is obtained as:

If the mass becomes infinity (M=oo) the reflection

ratios are obtained exactly same as those of the vis
coelastic supports as expected. If the damping in the
absorber is neglected. then the magnitude of the inci
dent wave is equal to that of the reflected waves. Only

When the plate is supported by translational springs
only (R=O), the real part and the loss factor of the
optimal translational stiffness for minimum reflection
of propagating waves are obtained as, from Eqs. (14 a,
c),

(l5a,b)

The corresponding reflection ratio is zero, which
suggests that complete absorption of incident vibra
tional energy can occur. However, the loss factor in
Eq. (15) is greater than typical loss factor value of
many viscoelastic materials, which is usually less
than 0.3 [8]. For constant loss factor, the optimal sup
port stiffness is obtained from Eq. (14a) as,

A (i+IXAI-T)-2TM
B= (i -lXl'vf - T)+ 2Tlvf '

C Zi(M -T)
B = (i -IXM - T)+ ZTlvf

O -4iT

B= (i-IXAl -T)+ZTM

(19a-c)
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the phase of the reflected wave changes. Using Eq.
(J8), the effects of viscous or viscoelastic support
stiffness can beanalyzed. The parameters of the timed
vibration absorberto be determined are m, St, and 771-

As an example, the tuned vibration absorber con
sisting of the mass and viscoelastic stiffness is con
sidered. In the analysis to find the optimal properties,
the amplitudes of the decaying waves and vibration of
the attached mass (C and U, respectively) are ne
glected. Fig. 4 shows the calculated dissipation ratio

(=1- 1.1/81\ The loss factor was assumed to be con
stant (71r= I). The parameters that maximize this dissi
pation ratio minimize the reflection from the vibration
absorber and are determined as the optimal properties.
Note that maximum dissipation of vibration occurs
when the non-dimensional parameters are close to
., 2/) d / Juruty, i.e., M == moi Dk; ""1 an T == S, Dk] '"1 .

The same numerical procedures can be repeated for
different values of the loss factor, and also for the
supports consisting of viscous damper and elastic
springs following the same numerical procedures.

eners, elastic supports, and distributed or lumped
masses. All these loadings can be included as shown
in Fig. 3(c), and the complex impedance is now ex
pressed as

where m, is the mass and I, is the polar moment of
inertia of the stiffener and the mass attached to the
structure. Note that S; and S; are the complex
impedance defined in section 3.1. As a generalization
of the complex stiffness in this section, S, and Sr
include the inertia loading. With the wave propaga
tions shown in Fig. 3(c), the plate displacement is
given as

w(x) = (ARe-ik,x + Beik,., + CRe-kb" )H(x)

+ (bre k
, ., + Bre ik

, . Xl- H(x)), (21)

3.3 Wave propagations in the middle ofthe classical
plate

For some applications, compliant supports may be
installed in the middle of the structure. One practical
example is the belt line seal that supports the vehicle
window. Also, beam or ring stiffeners may be added
to the plate to enhance the stiffness with minimum
amount of added material, which is important for
minimizing the weight and increasing the fuel effi
ciency of vehicles. In such cases, the rotational and
translational impedance includes loadings from stiff-

where H is the Heaviside step function. In Eq. (21),
there are five unknown amplitudes. By applying four
boundary conditions at x=O, the reflection and trans
mission ratios near the compliant supports are esti
mated. The four boundary conditions at x='O are:

(22a,b)

(22c,d)

By replacing Eq. (21) into Eq. (22), the following
transfer function matrix is obtained:

where the non-dimensional stiffness parameters, T
and R, are defined in Eq. (13). From Eq. (23), the
following transfer functions are calculated.

I

1

i-I
R+1l

I

i

i+T
if? -1

-2

Fig. 4. Dependence of reflection ratio on the parameters of
the tuned vibration absorber (mass and stiffness) assuming
constant loss factor.

.rlR 2T - 2R + RT

B = - 81 + 2(i-l)T - 2(i + l)R + if?i
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Note that the optimal stiffness calculated from Eq.
(28) is exactly four times larger than the stiffuess that

. induces maximum dissipation of the incident waves at

the edge, Eq. (16).Fig. 5(a) shows the reflection ratio
calculated by using Eq. (26). There is only one abso
lute minimum for each loss factor value. The mini
mum value depends on the value of the loss factor
similarly to the case ofthe supports at the edge.

The numerical procedures are repeated for the plate
supported by the rotational viscoelastic elements in
the middle. The optimal rotational support stiffness
that induces maximum dissipation of incident wave
occurs when the rotational stiffness is:

(25a,b)

For the above reflection and transmission coeffi
cients, complete dissipation of the incident wave with
complex amplitudes, B, occurs when the impedances
have the following values:

CR == - 2if + 2R - (i + I)fd (24a,b)

B - 8i + 2(i - I)f - 2(i + I)A + iRt
Br == 2i(t -4- R)
fJ - 8i+ 2(i - I)t - 2(i + I)R + iRt

Dr == 2Vt + R) (24c,d)
B - 8i + 2(i - l)t - 2(i + I)R + iRt .

Unlike the case of the support stiffness at the edge,
physical implementation of Eq, (25) is not straight

forward, since the loss factors are negative. When the
loss factor is negative, the harmonic displacement
response should occur earlier than the input force,
which is not possible for passive elements. Conse
quently, the complete dissipation of incident wave at
the support does not occur when the support is purely
viscoelastic. Instead, the support impedance that
minimizes the reflection or transmission of propagat
ing waves is calculated in the following. To minimize
the number of variables and by following the discus
sion in section 3.1.2, the loss factors are assumed to
be fixed.

When the support stiffness is purely translational,
the ratio of the reflected and transmitted propagating
waves to the incident wave is obtained as, from Eq.
(24),

The maximum dissipation of the incident propagat
ing wave can occur when

0.2·
I

10"

R

10' 10'

(27)

The optimal translational support stiffness that in

duces maximum dissipation of incident wave is con
sequently obtained as:

(b)

Fig. 5. Reflection ratio, IA
R

I ~2 + 1ST / S12
, VS. non

dimensional stiffness parameters at the middle of the plate.

(a) Effects of translational stiffness for R=O; (b) effects of

rotational stiffness for T=O. Loss factors, rJr and 17,: .. "j

0.023; "<..'--'. 0.06; " 0.15; ··L - ., 0.4;
•...J .,.. - , 1; . . , 2.
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Fig. 6. Effects of the non-dimensional stiffness parameters on
the inverse reflection and transmission ratio. ll,=fj,=O.15.

Similarly to the case of the translational stiffness,
the optimal stiffness calculated from Eq. (29) is four
times the stiffness that induces maximum dissipation
of the incident waves at the edge. Fig. 5(b) shows the
reflection ratio. The minimum value depends on the
value of the loss factor at the edge. For the rotational
stiffness, dissipation of incident waves increases as
the loss factor increases when the rotational stiffness
is optimum as shown in Fig. 5(b).

When the plate is supported by translational and ro
tational viscoelastic elements, Fig. 6 shows the varia
tion of reflection ratio on the translational and rota
tional stiffness. Although the loss factor of the sup
port stiffness is assumed to be the same value as the
case of the stiffness at the edge, less dissipation of
incident wave occurs in general. The saddle point
observed for the support at the edge [6] does not oc
cur in this case. The effects from the rotational and
translational support stiffnesses are almost independ
ent of each other.

4. Conclusions

Structural wave propagation was investigated in
order to study the characteristics of dissipation at the
supports. The support impedance that induces non
reflecting (impedance-matched) boundary conditions
was obtained. This impedance was the same as the
characteristic mechanical impedance of the supported
structure. Also, the boundary impedance that mini-

mized reflection and transmission at the compliant
supports and tuned vibration absorber was calculated
from which the optimal stiffness for maximum vibra
tion energy dissipation was determined. The optimal
impedance minimized reflection and transmission of
structural waves from boundaries, and consequently
reduces resonant response of the structure. When the
support properties were viscoelastic, its stiffness was
obtained assuming constant loss factor. A larger value
of the stiffness is required when the supports are in
stalled in the middle of the structure compared to the
case of the edge supports. The calculation was related
to wavenumber and structural properties, and can
guide the design of supporting methods conveniently
since it is done by simple closed form expression.
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