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Abstract

The dissipation of the structural vibration energy at viscoelastic supports is an efficient method of reducing modal
resonances and consequent noise and fatigue related problems. The support stiffness has significant impact on the mo-
dal characteristics. The dissipation capabilities of the viscoelastic support depend on its stiffness. Methods to optimally
tune this support stiffness are proposed in this study. The characteristic mechanical impedance for structural vibration is
obtained from wave propagation analysis and non-reflecting boundary conditions. The wave propagation is analyzed
near the supports installed at edges, middle of a structure, and for the mned vibration absorber. The dependence of the
optimal stiffness on the location and mass of the supports is identified. A simple analytical solution for optimal support
stiffness for maximum dissipation of propagating vibration energy at supports is presented.
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1. Introduction

Damping is an efficient method for reducing the
noise and vibration response of struchures. It does not
require external hardware to actively control and
monitor the responses. To enhance the damping in the
structures, it is not always possible to add damping in
the structure itself. An alternative approach is to con-
trol vibration via viscoelastic supports. For dissipation
of structural vibration, the viscoelastic materials are
widely used as the supporting material. The modal
properties and sound radiation characteristics are
affected by the support stiffness especially at low
frequencies. Among the modal parameters, modal
damping, which is the index showing the capability of
vibration reduction, is determined by elastic and ine-
lastic properties of the supports. The approach of
optimally tuning the support stiffness is attractive
since the mechanical properties of the supports are
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easier to modify than those of the supported structure
itself.

Many vibration control methods have been pro-
posed for continuous systems. In particular, dynamic
absorbers have been used to reduce the vibrations of
continuous systems such as rods and beams [1]. Dy-
namic absorbers consist of a mass, spring, and vis-
cous damper attached to the primary structure. Opti-
mal values for the absorber natural frequency and
damping ratio must be calculated to minimize the
vibrations of specific modes at resonances. For plates
and shells, the dynamic absorber performance was
analyzed by using the receptance method [2],

In cases where structures are compliantly supported,
the support mass is often negligible relative to that of
the supported structure. The support may be idealized
as a stiffness along the boundaries. The effects of
support flexibility on the vibration of beams and
plates have been investigated before. Kang and Kim
[3] investigated the effects of support stiffess on the
vibration of beams and plates. The flexible supports
were represented by transiational and rotational
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springs with complex stiffnesses. The variation of the
modal properties of the structures with the support
stiffness was calculated. Macbain and Genin [4] de-
veloped numerical methods using a central difference
formula to analyze the vibrations of beams with flexi-
ble supports. The system loss factors were found to
increase with a decrease in the support-to-beam elas-
tic modulus ratio. Chen and Zhou [5] investigated the
effects of damping on the vibrations of distributed
systems using wave propagation methods. Forced
vibration response and sound radiation of the compli-
antly supported classical plate were investigated by
Park et al. {6]. The optimal suffoess that minimized
the forced vibration and sound radiation from a rec-
tangular plate was obtained from the Rayleigh-Ritz
method and wave propagation analysis. The optimal
values obtained from the two different methods
agreed well with each other.

In this study, the wave propagation near compliant
supports is analyzed to calculate the optimal support
properties for minimal vibration response. The com-
pliant supports are idealized as distributed transla-
tional and rotational spring, inertia and damping ele-
ments. Reflection ratios are calculated from the rela-
tionship between incident waves to reflected and
transmitted waves. From the non-reflecting boundary
condition which is impedance matched supports, the
characteristic mechanical impedance for structural
vibration is obtained and compared to the case of
simple longitudinal vibration. The supports-are as-
sumed to be located at the edges and at the middle of
the structure, The theoretical methods to calculate the
optimal support stiffness that minimizes the velocity
response of the structure are presented.

2. Characteristic mechanical impedance ~a
vibrating solid bar

The mechanical impedance defined as force over
velocity is widely used to characterize the response of
a mechanical system to external excitations. For a
mass, m, supported by a spring with stiffness s,, Fig.
1{a), the mechanical impedance is estimated as

Z= _Fl = '(m(u—i‘—). 1)

The usual complex notation is used, F(5)=
Re{Fe™} . From the information of the mechanical
impedance, the time- or frequency-dependent re-
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Fig. 1. (8) A rigid mass supported by a spring, (b) wave
propagation in a comfinuous system.

sponse of the system to external loads is calculated.
When the damping in the system is neglected, the
mechanical impedance calculated from Eq. (1) is
purely imaginary. This implies that the energy input
from the external loads is stored as the kinetic and
potential energy of the system or reflected back to the
source.

For continuous systems, Fig. 1(b), such as plates,
mermbranes, beams, and fluids, the wave propagation
is a fluctuation of force (or pressure) and velocity of
the media over space and time. With this propagation,
the vibrational energy transfers over space, which
causes resonance if the system has a finite size. Since
the wave propagation is the simultaneous fluctuation
of force and velocity over space and time, two quanti-
ties are related to each other, and cannot be specified
independently. The characteristic mechanical (or
acoustic) impedance defines the relationship between
the force and the velocity. For example, the relation-
ship between the pressure and the particle velocity for
the plane traveling sound waves inairis 5 [P=p.c,
where p, is the air density and ¢ is the speed of sound.
In this case, g,c is the characteristic acoustic imped-
ance. Contrary to the mechanical impedance shown in
Bq. (1), the characteristic mechanical or acoustic im-~
pedance is purely real if the damping in the media is
negligible, which implies that the energy input from
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Fig. 2. Longitudinal wave propagation near the boundary of a
solid bar.

external loads propagate over space if the size of a
media is infinite.

The following example, a vibrating solid bar,
shows that complete absorption of the incident waves
occurs when the boundary impedance matches the
characteristic impedance. For the quasi-longitudinal
wave propagation of the sold rods, the wave equation
is {7,

Fw  pdw
a2 e @
where £ is Young’s modulus and p is the density.
For the longitudinal wave propagation, the wave
speed, ¢c= \/E/; , does not depend on the frequency
{non-dispersive wave propagation). The characteristic
impedance in this case is pc=+[pE . For the wave
reflection at x=0 in Fig. 2, the ratio between the am-
plitudes of the incident, B, and reflected waves, 4, is
calculated by applying the boundary condition at x=0:

Q%SL) = (ib,w) W(0) . G)

The coefficient &, is the boundary impedance,
b, = plxc = 0)(iww(x = 0)) where  p is the amplitude
of the fluctuating stress of the longitudinal wave. The
solution of Eq. (3) is assumed as

w{x)= Ae™™ + Be™ {4

where 4 and B are the complex amplitudes of the
reflected and the incident harmonic waves, respec-
tively, and £ 1s the wave number. From Eqgs. (3) and
(4), the reflection ratio for the wave propagation
shown in Fig, 2 is obtained as

_/jl_wEwcb,

- = . 5
B E+ch ©)

Note that the longitudinal wave speed does not de-
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pend on the frequency, and consequently the charac-
teristic acoustic impedance ( pc=\/;}§ ) is also fre-
quency-independent. From Eq. (5), there is no reflec-
tion of the propagating waves, i.e., 4=0, when the
boundary impedance matches the characteristic
acoustic impedance, 5 =J;f . This suggests that
the complete absorption of the incident waves oceurs
when the boundary impedance matches the character-
istic impedance of the longitudinal wave propagation,
thereby minimizing the undesirable vibration of the
rod.

The wave propagation analysis at the boundary of
the solid rod shown in this section is a simple exam-
ple demonstrating the numerical procedures to obtain
the boundary condition that induces the maximum
dissipation of the incident waves. In Eq. (4), the as-
sumed displacement includes only propagating wave
terms. This approach equally applies to systems with
second order differential equation of motions similar
to Eg. (2), for example, vibrating sirings, torsional
and shear vibration of rods. When the differential
equation of motion is fourth order. for example a
compliantly supported rectangular plate, similar ap-
proaches are used for the vibration analysis as de-
scribed in the following section.

3. Wave propagation analysis of the vibrating
structure

3.1 Wave propagation at the edge of the classical
plate

In this session, transverse waves approaching nor-
mally to the edge are considered. The plate is as-
sumed to be infinitely long in the x-direction in order
to allow for the calculation of the reflection ratio of
the normally incident bending waves. Transverse
displacements are assumed to vary only with the dis-
tance along the direction normal to the edge. Fig. 3(a)
illustrates the wave propagation at the edge and mid-
dle of the plate. The equation of motion for the free
transverse vibrations of a homogeneous plate without
any constraints in the y-direction is {7],

3w 'w
D"a-x—4—+ ph-é-t-:- = 0, (6)

where D = EW/12(1-v') is the bending stiffness, w is
the transverse displacement for flexural vibration, % is
the thickness, and v is Poisson’s ratio. For the trans-
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Fig. 3. Wave propagations {a) at the edge, (b) at the vibration
absorber, and {(¢) at the middle of a strugture, when the inci-
dent wave with complex amplitude B approaches from
x=00,
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verse vibration, the wave speed, ¢, .—:(a;zD/ ph)'/4 ,

inereases with increasing frequency. To determine the
wave propagation characteristic at the edge, two
boundary conditions are applied as

()

ox’

> w(0)
ax?.

w(0) )
ox
(Ta,b)

D =-SW(0), D =S

where §, and S, are the translational and rota-
tional boundary stiffnesses, respectively. Normally
incident harmonic waves with complex amplitude B
are assumed to propagate toward the edge from x = o,
The plate displacement is expressed as
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ﬁ/(x) = de™™ 4 Be™ + Ce™™ 1))

where %, is the bending wave number related to the

circular frequency, k, ={@’ph/D) *. Applying the

.boundary conditions, Eq. (7), the transfer functions

between the incident and reflected harmonic waves
are obtained as [6]

(f+1)+20R-2F (i + )RT |
(i =)+ 2R+ 2F - (i - )RT
21+ R7)

A+ R . (9a,b)
(i~ 1)+ 2R+ 2T - (i~ YRT

Lo O ) s

where the non-dimensional parameters are defined as:

P, oS (10a,b)
k; Dk,

o

3.1.1 Viscous supports

From the wave propagation analysis, the character-
istic mechanical impedance of structure is identified
from non-reflecting boundary conditions. To investi-
gate non-reflecting boundary conditions, viscous sup-
ports are considered. The non-dimensional stiffness
parameters are given as

(11a,b)

f: lCUb; , ‘Q:la)b, .
Dk, Dk,

From Egs. (9) and (11), the non-reflecting bound-
ary condition is satisfled when the damping coeffi-
cients are

Dk, D5 (12a,b)

@ w

b

These coefficients are identical to the characteristic
mechanical impedances of the transversely vibrating
plate [6]. The plate supports must include both trans-
lational and rotational viscous damping elements for
non-reflecting boundary conditions. In contrast with
the characteristic acoustic impedance of a vibrating
solid rod, which is frequency independent, the charac-
teristic translational and rotational impedances of
transversely vibrating plates depend on frequency.

3.1.2 Viscoelastic supports
For viscoelastically supported plates, the support
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stiffness is composed of complex translational and
rotational springs. The non-dimensional boundary
stiffoesses are given by

sz(}+in,)=§;3(l+iq,),

S
S,
Dk

R=R(1+in,)=—(1+i7,), (13a,b)
&

where S, and S, are the real parts of the complex sup-
port stiftnesses, and 7, and 7, are the loss factors. By
substituting Eq. (13) into Eq. (9), the reflection ratios
are calculated in terms of T, R, , and 7. For the
viscoelastically supported case, the non-reflecting
boundary condition that induces complete dissipation
of reflected waves of amplitudes 4 and C does not
occur. However, a support stiffness that minimizes
the amplitude of reflected propagating bending waves
can be found. The exponentially decaying waves have
a limited influence, and only at the edges. This com-
ponent does not contribute to the resonance. They are
neglected in the calculation. Only the reflected propa-
gating waves with complex amplitudes are minimized
in the optirnization problem. The minimum reflection
occurs when the parameters of the boundary stiff-
nesses satisfy the equations:

é

vl oyi

oT 0R
@p/élh =0, @’;4/31‘ =0. (14a-d)
ér, S o,

When the plate is supported by translational springs
only (R=0), the real part and the loss factor of the
optimal translational stiffness for minimum reflection
of propagating waves are obtained as, from Eqgs. {14 a,

c),

)

Sl,apl :T s Hrope = B (lSa,b)

The corresponding reflection ratio is zero, which
suggests that complete absorption of incident vibra-
tional energy can occur. However, the loss factor in
Eq. (15) is greater than typical loss factor value of
many viscoelastic materials, which is usually less
than 0.3 [8]. For constant loss factor, the optimal sup-
port stiffiess is obtained from Eq. (14a) as,

s . kD (16)

topt T \/m N

3.2 Tuned vibration absorber

A same approach is expanded to include the mass
in the support system, as shown in Fig. 3(b). When
the mass of the support system is considered after
neglecting the rotational stiffness, the support be-
comes the tuned vibration absorber. The mass at-
tached to the support stiffness increases the vibration
energy dissipation due to the resonance of the support
system, itself. There are many different approaches to
optimally tune the parameters of the tuned vibration
absorber, In this study, the wave propagation ap-
proach following the same procedures as for the vis-
coelastic supports is used to find the optimal parame-
ters. The three boundary conditions for Fig. 3(b) are:

(0 P .
k;axB = *T(W (O) - u)’ (173-5)
#———a‘f"(f)) =0, ~Mi =T0% (0)—2),
ox

where M =ma*/Dk; and u is the displacement of
the mass. Consequently, the following transfer func-
tion matrix is obtained:

(+7) 1+f) -7 Ta) [(-7
¢
u

B.

-1 1 0 ={ 1
Food -7 |
(13)

Using Eq. (18) the reflection at the edge which is
supported by the vibration absorber is obtained as:

A_(i+1){M-T)-2TM

B (-1fM-T)+2TM

¢ _ 2uM-T) (19a-c)
B (-1\M-T)+2TM

U ~4iT

7

G- -T)+20M

If the mass becomes infinity (A=00) the reflection
ratios are obtained exactly same as those of the vis-
coelastic supports as expected. If the damping in the
absorber is neglected, then the magnitude of the inci-
dent wave is equal to that of the reflected waves. Only
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the phase of the reflected wave changes. Using Eq.
{(18), the effects of viscous or viscoelastic support
stiffhess can be analyzed. The parameters of the tuned
vibration absorber to be determined are m, S, and 7.
As an example, the tuned vibration absorber con-
sisting of the mass and viscoelastic stiffness is con-
sidered. [n the analysis to find the optimal properties,
the amplitudes of the decaying waves and vibration of
the attached mass {C and U, respectively) are ne-
glected. Fig. 4 shows the calculated dissipation ratio
=1- |4/ é’[z ). The loss factor was assumed to be con-
stant {77=1). The parameters that maximize this dissi-
pation ratio minimize the reflection from the vibration
absorber and are determined as the optimal properties.
Note that maximum dissipation of vibration occurs
when the non-dimensional parameters are close fo
unity, i€, M =me’/Dk}~1 and T=S /Dk}~1.
The same numerical procedures can be repeated for
different values of the loss factor, and also for the
supports consisting of viscous damper and elastic
springs following the same numerical procedures.

3.3 Wave propagations in the middle of the classical
plate

For some applications, compliant supports may be
installed in the middle of the structure. One practical
exarmple is the belt line seal that supports the vehicle
window. Also, beam or ring stiffeners may be added
to the plate to enhance the stiffness with minimum
amount of added material, which is importamt for
minimizing the weight and increasing the fuel effi-
ciency of vehicles. In such cases, the rotational and
translattonal impedance includes loadings from stiff-

Dissipation ratic {6

R eatye! .‘,‘ﬂ“\w-" S
e s
S O e
e e
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log M 2
w0 2 10810(1)

Fig. 4. Dependence of reflection ratic on the parameters of
the tuned vibration absorber {mass and stiffness) assuming
constant loss factor.
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eners, elastic supports, and distributed or lumped
masses. Al these loadings can be included as shown
in Fig. 3(c), and the complex impedance is now ex-
pressed as

"3
~»

S’

(0
{0

:3;»«[02;11 > S’ :__(_Q_z_:g’

S = - -w*l,
{ ’ r 9(0)

r
r r

|

=

S|

(20a,b)

where m, is the mass and 7, is the polar moment of
inertia of the stiffener and the mass attached to the
structure. Note that 5,’ and § are the complex
impedance defined in section 3.1. As a generalization
of the complex stiffness in this section, § and §
include the inertia loading. With the wave propaga-
tions shown in Fig. 3(c), the plate displacement is
given as

1;['1()(:) = (fixe-ik” + Eeikbx A éR e—-k,x )fj(x)

+ (bTek”" + Be™ Xl ~ H{x)), b
where H is the Heaviside step function. In Eq. (21),
there are five unknown amplitudes. By applying four
boundary conditions at x=0, the reflection and trans-
mission ratios near the compliant supports are esti-
mated. The four boundary conditions at x=0 are:

AR o
0 )m 5l0°), B (o)L 9 (o) 2225
W()w()ax(o)ax(o) (22a,0)
D(a’fv(?* ) asv?»(?ﬁ} = ~8,4(0)
Bx ox
D(a%(()*)*azf"(?—)}:ﬁ' aﬁ/(O) (22C,d)
axz o 4 Ox

By replacing Eq. (21) into Eq. (22), the following
transfer function matrix is obtained:

1 o1 -1{4, -1
ln ‘1 i 1 C"R ] 3 23)
i+ T-1 & =i\ [ [i-T
R-1 R+1 1 —-1]{D,] [1+iR

where the non-dimensional stiffness parameters, 7'
and R, are defined in Eq. (13). From Eq. (23), the
following transfer functions are calculated.

27 -2+ RT )
~8i+2(i -1 -2 + DR + iRT

A
B



S Park / Jowrnal of Mechanical Science and Technology 21(2007) 211 7~2124

Q&: ~2if1+21%~(i+1)1§f ., (24a,b)
B -8i+2i -1 20+ )R +iRT

B, 21 -4~ R) ’

B -8i+2(i-0OF 20+ )R+ iRT

Dy _ ot + &) (24c,0)
B -8i+2(i-Ul -2+ )R +iRT

For the above reflection and transmission coeffi-
cients, complete dissipation of the incident wave with
complex amplitudes, B, occurs when the impedances
have the following values:

S, =(2-2i)Dk}, § =(-2-2i)Dk,.  (25a))

Unlike the case of the support stiffness at the edge,
physical implementation of Eq. (25) is not straight-
forward, since the loss factors are negative. When the
loss factor is negative, the harmonic displacement
response should occur earlier than the input force,
which is not possible for passive elements. Conse-
quently, the complete dissipation of incident wave at
the support does not occur when the support is purely
viscoelastic. Instead, the support impedance that
mintmizes the reflection or transmission of propagat-
ing waves is calculated in the following. To mumnimize
the number of variables and by following the discus-
sion in section 3.1.2, the loss factors are assumed to
be fixed.

When the support stiffness i3 purely transiational,
the ratio of the reflected and transmitted propagating
waves to the incident wave is obtained as, from Eg.
(24,

2

~

B,
B

= TP+{T-4Y +274°

(~a+7(-n) +1*(+7)

A
B

. (26)

+

The maximum dissipation of the incident propagat-
ing wave can occur when

~ 12 2

Ag

B

A

By

B

&

N
T

oT

=0- Q7N

The optimal translational support stiffness that in-
duces maximum dissipation of incident wave 1s con-
sequently obtained as:
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8

Som = kD"
topt m b

Note that the optimal stiffness calculated from Eq.
(28) is exactly four times larger than the stiffness that

(28)

" induces maxirnum dissipation of the incident waves at

the edge, Eq. ( 16). Fig. 5(a) shows the reflection ratio
calculated by using Eg. (26). There is only one abso-
jute minimum for each loss factor value. The mini-
mum value depends on the value of the loss factor
similarly fo the case of the supports at the edge.

The numerical procedures are repeated for the plate
supported by the rotational viscoelastic elements in
the middle. The optimal rotational support stiffness
that induces maximum dissipation of incident wave
oceurs when the rotational stiffness is:

T . k,D- 29)

3,08 BB
o
(-

7
(@)
1.2 gy e e e g e
: i
1.0 6@ !
i
o 1
R ge i
g :
" + 08 N
g !
~ i
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i |
!
0.0+ .
10 10* 10° 190 10"
R
(b}

. . . ~ ~12 ~ 2
Fig. 5. Reflection ratio, [AH/B’ +IBT /B‘ , V5. non-
dimensional stiffness parameters at the middle of the plate.
(a) Effects of translational stiffness for R=0; (b) effects of

rotational stiffhess for 7=0. Loss factors, mand o 7 "4,
0.023; == 0.06; S 5 T A X
e N , 1; .,..:'."_ﬁ,,. ’2'
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Fig. 6. Effects of the non-dimensional stiffness parameters on
the inverse reflection and transmission ratio. =7=0.15.

Similarly to the case of the translational stiffness,
the optimal stiffness calculated from Eq. (29) is four
times the stiffness that induces maximum dissipation
of the incident waves at the edge. Fig. 5(b) shows the
reflection ratio. The minimum value depends on the
value of the loss factor at the edge. For the rotational
stiffness, dissipation of incident waves increases as
the loss factor increases when the rotational stiffness
is optimum as shown in Fig. 5(b).

When the plate is supported by translational and ro-
tational viscoelastic elements, Fig. 6 shows the varia-
tion of reflection ratio on the translational and rota-
tional stiffness. Although the loss factor of the sup-
port stiffness is assumed to be the same value as the
case of the stiffness at the edge, less dissipation of
mcident wave occurs in general. The saddle point
observed for the support at the edge [6] does not oc-
cur in this case. The effects from the rotational and
translational support stiffnesses are almost independ-
ent of each other.

4. Conclusions

Structural wave propagation was investigated in
order to study the characteristics of dissipation at the
supports. The support impedance that induces non-
reflecting (impedance-matched) boundary conditions
was obtained. This impedance was the same as the
characteristic mechanical impedance of the supported
structure. Also, the boundary impedance that mini-

mized reflection and transmission at the compliant
supports and tuned vibration absorber was calculated
from which the optimal stiffness for maximum vibra-
tion energy dissipation was determined. The optimal
impedance minimized reflection and transmission of
structural waves from boundaries, and consequently
recuces resonant response of the structure. When the
support properties were viscoelastic, its stiffness was
obtained assuming constant loss factor. A larger value
of the stiffness is required when the supports are in-
stalled in the middle of the sfructure compared to the
case of the edge supports. The calculation was related
to wavenumber and structural properties, and can
guide the design of supporting methods conveniently
since it is done by stmple closed form expression.
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